Science and the Human Exploration of Mars: Risks to the Crew on the Surface

John B. Charles, Ph.D.
Thomas A. Sullivan, Ph.D.
Bioastronautics Office
NASA Johnson Space Center

NASA Goddard Space Flight Center January 11-12, 2001

Primary Factors of Effective Human Performance

- Low fatigue
- Alertness

[Sleep/circadian assessment]

- Healthy brain and mood
- Focused concentration [Behavioral medicine]

- Adapted to workplace
- Motivated

[Operational psychology]

- Physical interface to workplace
- Sensible workload[Human-to-system interface]

Crew Autonomy

Crew health care

- Radiation Protection
- Medical Surgical care
- Nutrition Food Supply
- Psychological support
 - meaningful work
 - surface science
 - planetary
 - biomedical
 - simulations of Mars launch, trans-Earth injection, and contingencies
 - progressive debriefs, sample processing, etc.
 - housekeeping
 - communications capability

Habitat

- Maintenance/housekeeping
 - workshop with HRET capabilities
- Exercise supplemental to Mars surface activities
- Recreation
- Privacy

Bioastronautics Critical Path Roadmap (CPR)

CPR: blueprint for focused evolving research and technology for "risk reduction" to prevent or reduce the risks to humans in space environment

- Mars Design Reference Mission (1997) "most challenging" scenario
- Identified: 55 risks, 343 critical questions in 12 risk areas
- Habitation systems
 - Advanced life support
 - Environmental health monitoring
 - Food and nutrition
- Medical care systems
 - Clinical capabilities
 - Multi-system (cross-risk) alterations

- Adaptation and countermeasure systems
 - Bone loss
 - Cardiovascular alterations
 - Human behavior and performance
 - Immunology, infection and hematology
 - Muscle alterations
 - Neurovestibular adaptation
 - Radiation effects
- Subset specific to surface ops: 35 risks, 233 critical questions

CPR Issues: Radiation

CPR: Radiation effects (possible synergy with hypogravity, other environmental factors)

- Early or Acute Effects from Radiation Exposure (esp. damage to Central Nervous System)
- Carcinogenesis Caused by Radiation

Issue: Surface Radiation Environment

- Large uncertainties about biological effects of GCR, SPE now prevent meaningful risk assessment (-)
- Possible risk from neutron backscatter from surface (-)
- EMU now not effective shielding (mobility ∞ protection⁻¹) (-)
- Attenuation of GCR & SPE by atmosphere, bulk of planet (+)
- Habitat, rovers assumed to provide storm shelters (+)
- Countermeasures (+)
 - Shielding: HDPE, H₂O
 - Chemopreventative/chemoprotective pharmaceuticals: possible cocktail of antioxidants, free-radical scavengers, toxic clearance agents

LARS SURFACE OF CPR Issues: Environmental

- Issue: Dust
 - Operational: fouling of habitat or pressure garment fittings and mechanisms could pose risk to health and safety
 - Medical: possible risk if inhaled
 - Physical irritant
 - Reactive and oxidizing
 - Pulmonary inflammation effects likely additive
- Issue: Biohazards
 - Dependent on extant biological activity
 - Possible health threat to crew (maybe not)
 - Planetary protection issues (Mars as well as Earth)
- CPR: Immune/Infection/Hematology
 - Allergies and Hypersensitivity Reactions
 - Immunodeficiency and susceptibility to infections
 - Altered Wound Healing

CPR Issues: Hypogravity

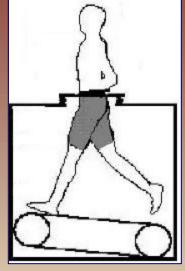
Issue: Efficacy of 0.38 g in countering deconditioning = ???
Therefore, Mars surface gravity <u>assumed</u> to be:

- Too LOW to be beneficial (for preserving bone integrity, etc.)
- Too *HIGH* to be ignored (for avoiding g-transition & vestibular symptoms)

Periodic health monitoring will also serve as applied research:

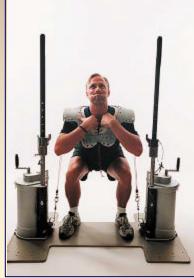
- probably longest period away from Earth to date
- probably longest exposure to hypogravity (0<g<1) to date</p>

CPR Issues: Hypogravity (continued)


Physical tolerance of stresses during aerobraking, landing, and launch phases, and strenuous surface activities

- CPR: Musculo-skeletal atrophy
 - Inability to perform tasks due to loss of skeletal muscle mass, strength, and/or endurance
 - Injury of muscle, bone, and connective tissue
 - Fracture and impaired fracture healing
 - Renal stone formation
- CPR: Cardiovascular alterations
 - Manifestation of serious cardiac dysrhythmias and latent disease
 - Impaired cardiovascular response to orthostatic stress and to exercise stress
- CPR: Neurovestibular alterations (possible synergy with radiation)
 - Disorientation
 - Impaired coordination
 - Impaired cognition

Concepts


"Gravity Augmentation" During Exercise On Mars Surface

Exercise in LBNP (Hargens, NASA ARC)

ISS Interim Resistive Exercise Device (Schneider, NASA JSC)

Self-Generated LBNP (Hargens, NASA ARC)

CPR Issues: Human Behavior and Performance

Issues:

- Small group size
- Multi-cultural composition
- Extended duration
- Remote location
- High autonomy
- High risk (both expensive & life-threatening)
- High visibility (e.g., high pressure to succeed)

CPR: Behavior and Performance

- Sleep and circadian rhythm problems
- Poor psychosocial adaptation
- Neurobehavioral dysfunction
- Human-robotic interface

CPR Issues: Human Behavior and Performance

Issue: Circadian Rhythm

- Sol = 24.62 hr
 - Human intrinsic rhythm = 24.1 ± 0.15 hr
 - synchronization not assured may require (chronic) intervention?
- Synchronization successful (best case): Unknown efficacy in maintaining circadian health
 - Daylight EVA ops: safety, efficiency
 - Shorten perceived stay (by 2.5%!)
 - Complicate Earth-based support (ref. Viking, Pathfinder/Sojourner; MER 2003 plng)
- Failure to synchronize (worst case):
 - Crew awake during Mars night every 41 days (40 sols)
 - Well-rested "night-time" ops vs. fatigued daylight ops
 - -200 deg F temperature
 - EMU issues
 - Limited visibility (no IR capability): increased risk of accident, trauma
 - Radiation minimized: reduced SPE influence at night (?)

Clinical Problems

CPR: Medical care systems for prevention, diagnosis or treatment

- Difficulty of rehabilitation following landing
- Trauma and acute medical problems
- Illness and ambulatory health problems
- Altered pharmacodynamics and adverse drug reaction

Require appropriate medical capability

- Expected illnesses and problems
 - Orthopedic and musculoskeletal problems (esp. in hypogravity)
 - Infectious, hematological, and immune-related diseases
 - Dermatological, ophthalmologic, and ENT problems
- Acute medical emergencies
 - Wounds, lacerations, and burns
 - Toxic exposure and acute anaphylaxis
 - Acute radiation illness
 - -Development and treatment of decompression sickness
 - Dental, ophthalmologic, and psychiatric
- Chronic diseases
 - Radiation-induced problems
 - Responses to dust exposure
 - Presentation or acute manifestation of nascent illness

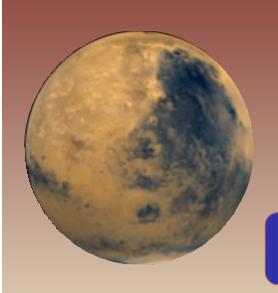
Projected Rates of Illness or Injury

Past Experience

0.06 person/year Based on U.S. and Russian space flight data, U.S. astronaut longitudinal data, and submarine, Antarctic winter-over, and military aviation experience:

- Incidence of significant illness or injury is 0.06 persons per year
 - ◆as defined by U.S. standards
 - ◆requiring emergency room (ER) visit or hospital admission
- Subset requiring intensive care (ICU) support is 0.02 person per year

Mars DRM


0.90 person/mission

For DRM of 6 crewmembers on a 21/2 year mission, expect:

- 0.9 persons per mission, or ~one person per mission, to require ER capability
- 0.3 persons per mission, or ~once per three missions, to require ICU capability
 - ~80% require intensive care only 4-5 days
 - ~20% do not.

Note: Decreased productivity, increased risk while crew reduced by 1-2 (including care-giver)

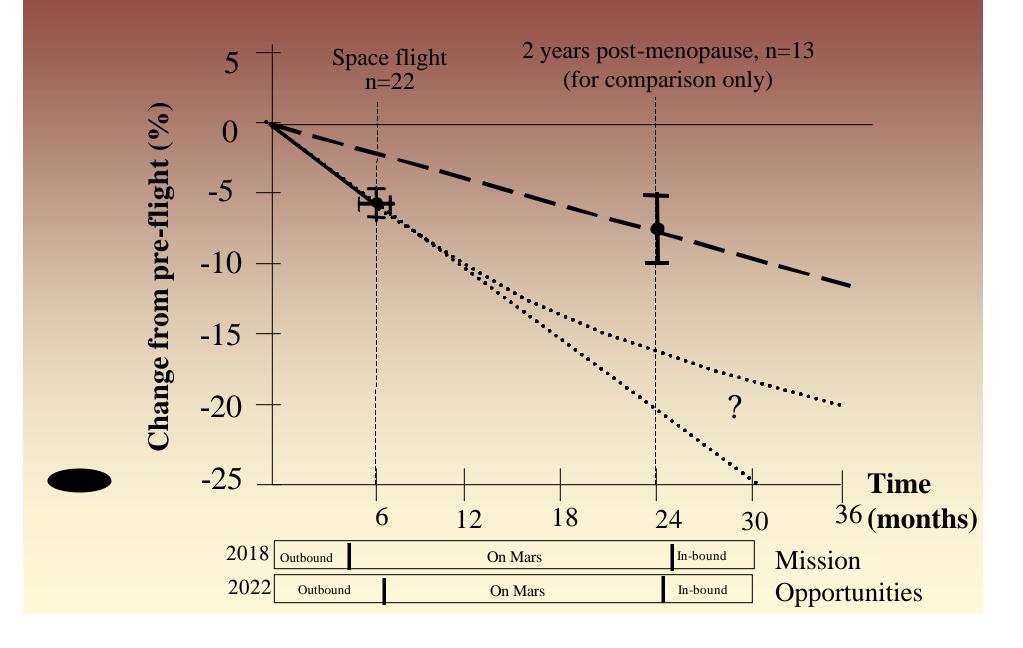
Conclusions

The human element is the most complex element of the mission design

Planetary missions will pose significant physiological and psychological challenges to crew members

Human engineering, human robotic/machine interface, and life support issues are critical

The Critical Path Roadmap Project has identified issues that <u>may</u> be show-stoppers (bone, radiation)


The ISS platform <u>must</u> be used to address exploration issues before any "Go/No Go" decision

A significant amount of ground-based and specialized flight research will be required to support Crewed Planetary Expeditions

Backup charts

HARS SURFACE OF Bone Integrity in Weightlessness

Strategy for Transition from Flight to Mars Surface Operations

Anecdotal evidence suggests ~50% of Russian *Mir* crewmembers were ambulatory *with assistance* immediately after landing, increasing to nearly 100% within hours (with effort), then decreasing for days thereafter, before gradual recovery

Assume

Only 3 out of 6 Mars crewmembers are ambulatory immediately after landing

Start with passive tasks, progress to strenuous tasks

- First 1-3 days activities limited to reconfiguration of lander/habitat and surface reconnaissance
- Then, conduct first Mars walk(s) in vicinity of lander (umbilical instead of backpack?)
- Next, use unpressurized rover for early, shorter excursions
- After a week or more, extended excursions are possible